nugatory$53998$ - translation to greek
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

nugatory$53998$ - translation to greek

STUDY OF MATHEMATICAL KNOTS
Knot diagram; Knot equivalence; Knot Theory; Algebraic topology based on knots; Alexander-Briggs notation; Knot table; Link diagram; Alexander–Briggs notation; Hyperbolic invariant; Rolfsen notation; Rolfsen knot table; Hoste-Thistlethwaite knot table; Thistlethwaite link table; Knot crossing; Nugatory crossing; Reducible crossing; Removable crossing; Theory of knots; Crossing (knot theory); Knot (topology)
  • A knot diagram with crossings labelled for a Dowker sequence
  •   A 3D print depicting the complement of the figure eight knot<br>by François Guéritaud, Saul Schleimer, and [[Henry Segerman]]
  • Intricate Celtic knotwork in the 1200-year-old [[Book of Kells]]
  • A table of prime knots up to seven crossings. The knots are labeled with Alexander–Briggs notation
  • The first knot tabulator, [[Peter Guthrie Tait]]
  • 130px
  • 210px
  • 360px
  • center
  • Adding two knots
  • Examples of different knots including the [[trivial knot]] (top left) and the [[trefoil knot]] (below it)
  • A knot diagram of the trefoil knot, the simplest non-trivial knot

nugatory      
adj. μηδαμινός, μάταιος, άκυρος, ασήμαντος, ανάξιος

Wikipedia

Knot theory

In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R 3 {\displaystyle \mathbb {R} ^{3}} . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R 3 {\displaystyle \mathbb {R} ^{3}} upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a fundamental problem in knot theory is determining when two descriptions represent the same knot.

A complete algorithmic solution to this problem exists, which has unknown complexity. In practice, knots are often distinguished using a knot invariant, a "quantity" which is the same when computed from different descriptions of a knot. Important invariants include knot polynomials, knot groups, and hyperbolic invariants.

The original motivation for the founders of knot theory was to create a table of knots and links, which are knots of several components entangled with each other. More than six billion knots and links have been tabulated since the beginnings of knot theory in the 19th century.

To gain further insight, mathematicians have generalized the knot concept in several ways. Knots can be considered in other three-dimensional spaces and objects other than circles can be used; see knot (mathematics). For example, a higher-dimensional knot is an n-dimensional sphere embedded in (n+2)-dimensional Euclidean space.